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Abstract 

Humans and machines have competing strengths for tasks 
such as natural language processing and image 
understanding.  Whereas humans do these things naturally 
with potentially high accuracy, machines offer greater 
speed and flexibility.  CrowdFlow is our toolkit for a 
model for blending the two in order to attain tighter control 
over the inherent tradeoffs in speed, cost and quality.  With 
CrowdFlow, humans and machines work together to do a 
set of tasks at a user-specified point in the tradeoff space.  
They work symbiotically, with the humans providing  
training data to the machine while the machine provides 
first cut results to the humans to save effort in cases where 
the machine’s answer was already correct. The CrowdFlow 
toolkit can be considered as a generalization of our other 
domain-specific efforts aimed at enabling cloud computing 
services using a variety of computational resources to 
achieve various tradeoff points. 

1. Introduction 
There is a large set of problems that can be solved either by 

human computation or machine learning.  These include 

recognizing the faces of missing children in surveillance videos, 

translating documents between languages, or summarizing the 

opinions of blogs relating to a particular topic, and many others 

from the realms of natural language processing (NLP),  

Generally, humans can solve these problems with higher 

accuracy than machines alone could do, though human efforts 

tend to be costly and time-consuming.  Online labor markets 

such as Amazon Mechanical Turk (AMT) [13] give more 

flexibility than traditional in-person human labor.  However, for 

most tasks, even this approach is significantly slower and more 

expensive than using machines.  The advantage of machines is 

that they are inexpensive and fast, although they tend to have 

lower accuracy, especially when problems are difficult. 

Human computation – alternately referred to as crowdsourcing 

[5][7], distributed human computation [16], or collective 

intelligence [14] - is the practice of distributing work, typically 

computation-like tasks, to a large number of humans via the 

web.  Most crowdsourcing applications represent specific points 

in the speed-cost-quality spectrum.  For example, games with a 

purpose (GWAPs) [22][23] typically keep human labor costs to 

a minimum and to use several redundant annotations to ensure 

the quality of the final results, all at a cost of time.  MonoTrans, 

another current project of ours, uses monolingual human 

participants in collaboration with machine translation systems to 

translate books - resulting in translations which are between 

pure machine and pure expert (bilingual) human solutions 

[2][9].  Although MonoTrans is not a GWAP, it is similar in that 

it yields relatively high quality and low cost, at the expense of 

time.  Naive uses of AMT provide faster turnaround time (and a 

greater range of potential applications) at the expense of cost 

and quality. 

The principal goal of this research is to discover strategies that 

combine the strengths of humans and machines, in order to 

move past these two rigid extremes.  We would like to give 

developers the flexibility to choose any point in the speed-cost-

quality spectrum, and automatically combine human and 

machine resources to achieve the desired balance.  To do so in a 

general way is an ambitious goal. 

We are developing a framework for blending capabilities of 

humans and machines in order to enable much greater flexibility 

with respect to speed-cost-quality.  The strategy blends the 

flexibility of Amazon Mechanical Turk with machine learning 

(or other automated methods). 

To demonstrate the framework, we built the CrowdFlow toolkit, 

a programming library for distributing tasks between AMT and 

an automated system.  The toolkit is currently implemented in 

Python and should be available for download sometime in 

summer 2010.  The main advantages of this toolkit are that it 

manages the allocation of tasks to humans and machine(s) in 

order to achieve the desired speed, cost, or quality level. 

An especially powerful element of this framework is that the 

humans and machines benefit from one another.  Machines 

benefit from receiving human-created training data that helps 

boost their accuracy.  In turn, the human workers may benefit 

from having the machine results as a starting point.  When the 

machine results are correct, the human worker need only verify 

that it is correct, rather than doing the task from scratch. 

2. Related Work 
The idea of a symbiotic relationship between humans and 

computers goes back to the 1960s, when Licklider theorized 

about the future potential for such systems [11].  More recently, 

the idea of complementary computing has been applied to 

corporate telephone systems, where callers may be automatically 

transferred to a human operator, as opposed to the automated 

menu, but only when there was a need and the immediate 



availability of operators.  Whereas CrowdFlow puts the power to 

balance the task load in the hands of the developer, this 

telephone system served as an automatic load-balancing 

mechanism [6]. 

The idea of a compromise between automated and human 

control has also been used for entertainment-oriented characters 

in virtual environments [4].  The AR Facade system allows 

participants to interact with characters that are partly AI-

controlled, and partly controlled by human operators in a Wizard 

of Oz fashion. 

Many research projects have investigated what factors influence 

quality in crowd sourced results.  Snow found that by collecting 

an average of four non-expert labels on AMT for NLP tasks, 

they were able to approximate the level of quality ordinarily 

provided by expert annotators [19].  Vijayanarasimhan and 

Grauman used automated image processing algorithms to try to 

approximate the expected cost of procuring image annotations 

from human workers based on the visual complexity of the 

image [21]. 

Pricing online work entails the complexities of labor economics 

compounded by the specific constraints imposed by AMT or 

whatever system is being used.  Thus, most research to date has 

been limited in scope.  In the context of paid question-answer 

services, it has been established that offering higher incentives 

prices tends to increase the participation by widening the set of 

potential respondents [8][10].  However, in most cases, higher 

prices do not necessarily yield higher-quality. 

Enhancing the capabilities of AMT with richer programming 

models was demonstrated by the TurkIt toolkit, which enables 

programmers to use human workers in iterative algorithms [12].  

The CrowdFlow toolkit is different from TurkIt in that 

CrowdFlow specifically ties into machine learning systems and 

actively facilitates the pursuit of specific speed-cost-quality 

targets. 

Some commercial systems such as CrowdFlower (unrelated to 

CrowdFlow) [1] utilize well-tuned algorithms for controlling 

cheating and enhancing quality.  CrowdFlow also supports 

active monitoring for cheating, although that is only a secondary 

purpose of this work. 

3. The CrowdFlow Concept 
With CrowdFlow, the user of the system will specify the desired 

speed-cost-quality tradeoff.  The system will then allocate tasks 

to humans and machines in a way that will attempts to fulfill the 

user’s specification. By estimating system performance, we can 

describe a tradeoff space gamut within which it is possible for 

the human manager to manipulate the system. 

Speed may be expressed as a time limit for completing the job.  

Similarly, cost is the maximum the user is willing to pay to 

Turkers and/or for any cloud-based computational resources.  

(The latter is planned but not currently implemented in our 

toolkit.)  Quality is measured relative to some satisfaction 

criteria the user provides.  It could be a heuristic that combines 

multiple criteria. 

Making CrowdFlow work entails several challenges.  First, we 

must be able to estimate, within some confidence interval, the 

accuracy of the human workers, even if there is no ground truth.  

This is doubly important when you consider that without the 

humans’ judgment, it is impossible to estimate the machine’s 

accuracy.  Also, the system must keep updating the accuracy 

estimates and automatically adjust the allocation of tasks as 

needed. Second, we need to specify a generic architecture that is 

both easily usable by developers of specific problems while still 

providing significant value. Third, we need to understand and 

support the wide range of human capabilities in this context. 

Finally, a stretch goal is to go beyond independent actions and 

support true interactive collaboration between human and 

machine participants. 

Our goal is to keep CrowdFlow as general and broadly 

applicable as possible.  Specifically, we expect it to be 

applicable to problems with these properties: 

 Solvable by humans but at a speed or cost that makes scaling 

up impractical. 

 Solvable by computers (including but not limited to machine 

learning algorithms), but with quality less than humans and 

less than what the situation requires. 

 Divisible into small, independent subtasks. 

In particular, we expect it to be especially useful for tasks with 

this additional optional property: 

 Cannot be solved by machine learning algorithms previously 

trained for other problems due to domain-specific challenges. 

CrowdFlow uses Turkers in two primary roles: 

   
 

Figure 1. Tradeoffs resulting from different kinds of systems.  (a) human labor only;  (b) supervised learning with machine 

utilizing human-created training data;  (c) automated machine methods with human correction;  (d) CrowdFlow 



 Worker looks at the question (or other stimulus) and creates 

an answer. 

 Fixer takes an answer believed to be wrong but easy to fix, 

and changes it to make it correct. 

Which role is used depends on the specifics of the domain and 

the characteristics of the machine learning system.  If the 

cognitive cost of fixing an incorrect result is low, and/or if the 

accuracy of the machine is relatively high, then the fixer role is 

preferred.  It allows Turkers to benefit from the machine results, 

thus reducing their effort, and potentially reducing the required 

price and/or time required to get the work done.  On the other 

hand, if there is an especially high cognitive load associated 

with looking at an incorrect result and transforming it into a 

correct result, and/or if most of the machines results are wrong, 

then it may be easier for Turkers to just do the tasks from 

scratch.  In our toolkit, the user of the system makes the 

decision.  Ultimately, we envision that the valve will decide 

automatically, or use some combination of each, if needed. 

 Validator looks at an answer from a human or machine, and 

simply reports if it is correct or not. 

 Appraiser takes an answer believed to be wrong and decides 

whether it would be easier to fix it or replace it with a new 

answer. 

 Corrector takes an answer which may or may not be correct, 

and either validates that it is correct, fixes it to make it 

correct, or replaces it with a new correct answer. 

A CrowdFlow implementation will include a fully automated 

system, a network of human contributors, and a valve.  The 

valve is the unit that maintains accuracy estimates and calculates 

the optimal allocation of work between the machine and the 

various human roles.  The conceptual model of CrowdFlow is 

shown in Figure 2. 

In addition to the task allocation, the valve will also make use of 

human results to train the machine (if it is a learning system in 

need of further training data).  Depending on the problem, it 

may also feed the lower quality machine results to humans (i.e. 

correctors, validators, etc.) as a starting point, to make the task 

easier than simply answering from scratch. 

4. Sample applications 
We built two sample applications, which demonstrate a subset of 

the full model.  One of the applications uses human participants 

as Workers.  The other uses Workers and Fixers.  These 

domains were chosen because they present different challenges 

and thus illustrate the generality of the CrowdFlow approach.  In 

this section, we describe the context of these applications. 

4.1 Text processing 
Natural language processing (NLP) has made great strides in 

developing algorithms and systems capable of analyzing textual 

language, but despite researchers' best efforts, automated 

solutions still do not achieve human-level performance in most 

tasks. We believe that text processing in general is a promising 

application area for CrowdFlow. 

One specific application is large-scale sentiment analysis, also 

called opinion mining [15]. The goal is to automatically analyze 

how people "feel" with respect to a particular target, extracting 

such features as polarity (positive or negative) and intensity, as 

well as finer-grained structure such as topic facet, rationale, or 

precise identification of the opinion holder. It is easy to see the 

applications of such technology in areas from marketing to 

counter-terrorism to political campaigning. Clearly, paying 

human editors to read and summarize all of the opinions is 

expensive and not scalable, while automated machines today 

aren't good enough. Fortunately, each review can be analyzed 

independently and then aggregated in a straightforward way, 

making this problem ideally suited to CrowdFlow. 

Another important application in NLP is machine translation, or 

algorithms and systems for automatically translating text from 

one language into another. In today's increasingly multi-lingual 

world, the ability to transcend language barriers is important to 

many organizations ranging from multinational corporations to 

intelligence agencies. Although for certain language pairs, 

automated techniques can produce quite understandable output, 

the output is far from perfect and is often garbled. Human 

translators, on the other hand, are highly-trained and highly-

skilled, making manual translations of large amounts of text 

prohibitively expensive. Finally, for the most part, translation 

can be parallelized given some appropriate level of granularity 

such as a document or individual message. Thus, translation 

between human languages could be performed using 

CrowdFlow. 

4.2 Human detection 
Another computing task our framework is well suited to is the 

retrospective analysis of surveillance videos.  For example, one 

might need to find occurrences of a specific type of event in a 

long video sequence. Since events of interest often involve 

humans, it is necessary to first detect humans in videos before 

their activities can be analyzed. Human detection is a problem 

that can be solved by human workers more accurately than by 

 
 

Figure 2. CrowdFlow conceptual model. 



machines.  Conversely, machines can solve it more cheaply.  

When human workers do this kind of work, a video is typically 

partitioned and distributed to several workers who can work in 

parallel.  They may use a specialized GUI to draw bounding 

boxes around each human in every frame. On the other hand, to 

solve purely by machines, a human detector must be pre-trained 

using images of humans obtained from other videos before it can 

be applied to the current video. Our hybrid computing 

framework makes it possible for human and machine workers to 

collaborate in a seamless manner. Human images detected by 

the machine workers can be validated and/or fixed by human 

workers.  Similarly, results obtained from human workers can be 

used as additional domain-specific training examples to retrain 

and improve the accuracy of the human detector. Most 

importantly, at all times the automated valve will attempt to 

maintain the right mix of human and machine work to yield the 

desired speed, cost, and quality characteristics. 

5. Implementation 
Our toolkit is implemented in Python and uses Amazon 

Mechanical Turk (AMT).  Our goal is for the system to 

ultimately help developers blend answers from machine learning 

classifiers and Turkers to yield results within preset speed-cost-

quality settings.  The core CrowdFlow implementation is 

structured as an object-oriented Python library that can be used 

by programmers developing solutions to a wide variety of 

problems.  It takes care of the valve’s balancing logic as well as 

the low level details of dealing with the AMT web service.  The 

CrowdFlow library exposes the following domain-independent 

components (implemented as Python classes): 

 Valve: The controller responsible for allocating tasks to the 

machine(s) and human(s), submitting the needed HITs to 

AMT, and overseeing the process to ensure that the given 

accuracy/cost/time constraints are fulfilled.  

 AMT: Handles the mechanics of interfacing with AMT, 

including submitting HITs, qualifications (i.e. for informed 

consent forms), etc. 

 Machine: An abstract class representing a generic machine 

learning classifier with train(question,answer), 

evaluate(question), init(), and terminate() methods.  This will 

be overridden at the user of the CrowdFlow library. 

 Task: An abstract representation of a task that, when 

overridden, contains the specifics of each task instance.  This 

could contain a URL, a string of text, the full data of an 

image, or anything else. 

 HITSpecification: Instantiated by the user of the library to 

encapsulate details about the HIT, such as the price, required 

qualifications, and user interface that the Turkers  will use to 

complete the HITs. 

Since the CrowdFlow framework is intended to be general, we 

allow the user to specify the user interface using AMT's native 

XML schema, which provides maximum flexibility to support 

HITs containing any combination of text, HTML, images, video, 

and even dynamic content such as Flash and Java.  For example, 

supporting the human detection tasks type requires an interface 

for drawing bounding boxes over a photograph.  Since the exact 

XML will usually depend on the specifics of each task, the user 

of the library provides a function taking a list of Task instances 

as the argument. 

The CrowdFlow library also accommodates a wide variety of 

machine algorithms by allowing the user to wrap any executable 

as a subclass of the Machine class.  This means that the service 

can be distributed across multiple machines. 

To use CrowdFlow to perform a set of tasks, the user of the 

library sets up an account with AMT and writes the following 

code: 

 subclass of the Machine class, providing the necessary glue 

code to interface with the user’s machine learning system 

 subclass of the Task class, including logic for interpreting and 

scoring answers 

 function to generate the XML description of the HIT user 

interface given a list of tasks 

 main function which invokes the valve using the desired 

constraints and an instance of the HITSpecification class 

In addition, if training data is available, CrowdFlow will use it 

to start training the machine.  The training data, if available, is 

also used to establish the estimated reliability of Turkers. 

5.1 Running the job 
When the user's program instructs the valve to run the job, it 

starts by training the machine with the initial training data (if 

any) and establishing the initial accuracy of the machine by 

performing cross-validation with slices of the training data.  If 

no training data was provided, then the user must provide an 

accuracy estimate for the machine. 

After initializing the machine, the valve uses the given 

constraints to calculate an initial split, the proportion of the tasks 

to be allocated to humans.  Then, it submits the HITs to AMT 

and evaluates the rest of the tasks on the machine.  It polls 

periodically to monitor progress.  Incoming results are used to 

further train the machine.  It also notifies the user’s program of 

progress via a callback mechanism. 

Once enough HITs have been completed to fulfill the given 

constraints, the valve cancels any outstanding HITs.  The results 

are sent to the calling program via a callback mechanism, and 

stored in a database (currently implemented with SQLite).  The 

database is accessible via the CrowdFlow API. 

5.2 Cheating 
The CrowdFlow toolkit integrates a mechanism for discouraging 

cheating and mitigating its effects.  The valve intersperses tasks 

with known ground truth (from the training data) along with the 

tasks for which answers are being sought.  As it monitors the 

incoming results, it keeps a running accuracy estimate for each 

Turker.  Once the Turker has completed a given number of 

HITs, if the Turker’s accuracy is below some given threshold, 

all results from that Turker are invalidated and the 

corresponding tasks are resubmitted so they can be done by 

another Turker.  At that point, the system sends an e-mail 

warning to the Turker that if the quality does not improve, they 

will be blocked from doing these HITs.  If the Turker continues 

to send low-quality results, they are in fact blocked.  The 

thresholds are supplied by the user via the API. 



Currently, this requires that the user provide some initial training 

data.  In the future, we hope to develop more sophisticated 

methods that can detect cheating and estimate accuracy, even 

without any initial training data. 

A significant downside of this mechanism is that these tasks 

with known ground truth are included in the HITs.  Thus, it 

incurs monetary cost and makes the entire job take longer.  For 

this reason, in our early trials of the system, we did not use such 

a mechanism.  In that trial, we had Turkers do 2000 tasks based 

on the sentiment polarity domain.  Cheating was very prevalent.  

Presumably, the Turkers were using scripts to automatically 

click on answers at random. 

Our analysis of that preliminary data showed a clear distinction 

between the cheating and the honest work.  The 2,000 HITs 

were completed by 15 unique Turkers who did between 3 and 

568 HITs each.  The 9 cheaters (defined as Turkers whose 

answers agreed with expert judgments less than 55% of the 

time) accounted for 91% of the HITs.  The 6 non-cheaters each 

had agreement with expert judgments more than 75% of the 

time. 

We knew beforehand that cheating might occur and we knew of 

several tactics for mitigating it.  However, we opted to do that 

initial exploration without their use.  Since many such strategies 

add complication to the HITs or limit which Turkers can do 

them, they confound measurements of the speed at which HITs 

are accepted and performed.  Unfortunately, with cheaters 

accounting for 91% of the results, that goal was unattainable. 

Several alternatives exist.  Delores Labs uses a similar system in 

conjunction with a multilevel approach whereby Turkers who do 

good work are given special qualifications that give them access 

to more HITs reserved specifically for Turkers known to do 

good quality work.  Amazon also provides facilities for blocking 

Turkers whose previous work was marked as unacceptable some 

given percent of the time.  Sheng proposed using redundant 

annotations to reduce noise from cheating and other sources of 

wrong answers [18], a strategy which is widely employed.  Von 

Ahn built games where two participants unknown to each other 

answer the same question simultaneously, and they only get 

points if their answers agree, thus incenting participants to 

submit answers that would generally be considered correct [22].  

Although that work was specific to games, the idea of having 

users validate each other’s work explicitly has been proposed for 

use on AMT [20].  Chen used statistics to identify which work 

had been performed by cheaters [3]. 

The policy of AMT is that Requesters (those who submit HITs) 

may refuse payment for work deemed to be of low quality.  

Thus, some requesters review the work and refuse payment for 

low quality results.  Naturally, this approach is unpopular with 

Turkers.  The web site Turker Nation serves as a de facto 

blacklist of Requesters alleged to have used tactics that Turkers 

consider unfair.  Thus, refusing payment could potentially lead 

to negative repercussions.  Furthermore, it requires checking the 

work for correctness, which necessitates additional labor. 

6. Analysis 
We wanted to better understand CrowdFlow's ability to flexibly 

target a specific point in the speed-cost-quality tradeoff space.  

Running CrowdFlow repeatedly for every possible point in the 

space would consume time and money needlessly.  Instead, we 

ran the HITs once and used simulation to explore the space. 

In all cases, we used CrowdFlow’s anti-cheating mechanism as 

above, sending a warning after 10 poor results and 

banning/discounting the Turkers’ work after 20 poor results, 

with the threshold set as a program parameter.  Only one Turker 

was banned/discounted.  This may be because we restricted 

these HITs to only Turkers with an established approval rating 

of at least 80%. 

To run the HITs for all of the tasks, we used CrowdFlow and set 

the allowable error threshold to 0% (100% accuracy).  This way, 

the valve directed all of the tasks to Turkers.  The result was a 

set of human-provided answers to all of the task instances for 

which we had ground truth data available.  In all cases, the 

ground truth data was provided by the authors of the papers 

describing the respective machine learning algorithm. 

6.1 Human Detection in Photographs 
For the human detection domain, we used the fixer role.  

Turkers were given a photograph and instructed to  ensure that 

each human was covered tightly by a bounding box.  The images 

 

Figure 3. Human detection domain user interface on Amazon Mechanical Turk. 



were taken from the INRIA person data  set, which is popular 

among image understanding researchers and includes ground 

truth for every image.  A web  interface (Figure 3) for drawing 

and editing bounding boxes was provided.  It was pre-populated 

with results generated by  the freely available DetectorPLS 

human detection software [17].  Some of the images contained 

multiple  humans.  Results were scored using an algorithm based 

on the overlap between the Turker's bounding boxes and the  

ground truth bounding boxes.  Since we wanted to gain 

experience with the fixer role, we used only images for  which 

the machine detected at least one human - about half of the total 

set.  Among this subset of 120 images,  the machine’s accuracy 

is 60% using the same scoring algorithm. 

It took 3 hours 42 minutes to get the results, including the time 

to rerun some HITs due to cheating.  The  average accuracy of 

the results from the Turkers was 90%.  Payment was rejected for 

the one Turker whose work was rejected and resubmitted due to 

significant cheating.  Thus, the total cost was $2.40. 

Based on these results, we can estimate the work split required 

to achieve any other point in the tradeoff space. 

Consider a few possible scenarios, supposing we had 1000 of 

these tasks and the general cost, time, and accuracy per task 

remained the same. 

6.1.1 Time constraint 
If time is the chosen constraint, then the human load LH can be 

estimated dividing the time target T by 111 seconds, the 

observed time per hit (start to finish, including the additional 

time at it by anti-cheating measures). 

LH = 
T

111 seconds
 

Then, the cost C and combined accuracy A are found as 

C = $0.02 • LH 

A = 90% • LH + 60% • (1000 - LH) 

For example, if we limited the time to 10 hours, we would have 

collected 324 judgments at 90% accuracy, with the remaining 

676 tasks done by the machine at 60% accuracy. Thus, we 

would have an overall accuracy of 70%, costing $6.48, and 

taking 10 hours.  

6.1.2 Cost constraint 
Calculating based on a cost constraint is done similarly.  We 

divide the cost limit C by the price per HIT to get the human 

load. 

LH = 
C

$0.02
 

Then, the combine accuracy A is found as above and the time T 

as follows: 

T = LH • 111 seconds 

For example, doing the same 1,000 tasks while limiting the cost 

to $5, we would have had 250 human judgments and 750 

machine judgments, for an overall accuracy of 68%, costing $5, 

and taking 7 hours 42 minutes. 

6.1.3 Accuracy constraint 
Calculating the human load for an accuracy constraint A, We 

start with the equation for A. 

A = 
90% • LH + 60% • LM

1000
 = 

90% • LH + 60% • (1000 - LH)

1000
 

Then, we solve for LH. 

LH = 1000 • 
A - 60%

90% - 60%
 

Cost and time are calculated the same way as above. 

For example, if we fixed the accuracy A for those same 1,000 

tasks at 70%, we would have needed to give 333 tasks to 

Turkers, for a total accuracy of 70%, costing $6.66, and taking 

10 hours 16 minutes. 

6.2 Sentiment Polarity of Movie Reviews 
The sentiment clarity analysis task consisted of deciding if a 

movie review is more positive or negative.  The classification 

code is provided with the LingPipe natural language processing 

toolkit for Java (http://alias i.com/lingpipe/). It uses the 

algorithm and movie review data and ground truth described by 

Pang & Lee [15].  The data set consists of 2,000 movie reviews 

taken from the IMDB discussion group.  The average length of a 

review is 612 words. The Turkers agreed to an informed consent 

form via AMT's qualification mechanism.  Each HIT (Figure ) 

presents three movie reviews at a time and uses radio buttons to 

let the Turker enter a judgment of "positive" or "negative".  

Turkers were paid US$0.05 per HIT, with each HIT containing 3 

movie reviews 

Over a period of 8 hours 7 minutes, the Turkers judged a total of 

1083 movie reviews (361 HITs) for a total cost of $54.35.  No 

Turker was discounted due to cheating.  The overall human 

accuracy was 91.0%.  In comparison, the machine classifier can 

 

Figure 4. Sentiment polarity analysis user interface on 

Amazon Mechanical Turk. 



do the same tasks with only 83.5% accuracy.  A similar 

extrapolation could be done with this domain. 

7. Discussion and future work 
This toolkit is the first step in this line of research.  It does not 

use all of the roles and possibilities we envision for CrowdFlow, 

nor does it resolve all of the difficult questions that would be 

necessary to fully realize the vision.  However, the flexibility of 

CrowdFlow to provide a spectrum of speed-cost-quality 

tradeoffs is evident from the simulations. 

The experiments we have run to date exercise the two directions 

of benefit, humans providing training data to machines and 

machines providing imperfect results to save the humans work.  

However, as Figure 5 illustrates, neither of these domains 

exercise both direction at the same time.  Ultimately, that will be 

the goal. 

Looking forward, we would like to know what factors affect the 

speed at which Turkers will accept HITs, and to what extent the 

current AMT design is influencing the economics.  This would 

be useful for maximizing the benefits of AMT, but also to 

inform the design of any future online on-demand labor market 

place. 

Regarding the roles we described above, we plan to do more 

evaluations to understand how those can be used to optimize the 

output with CrowdFlow.  To do that, we will need to know how 

cognitively expensive it is for a human to judge whether a 

machine generated answer is good enough to correct versus 

clearing the answer and starting over.  Perhaps research methods 

from economics could guide such an exportation by estimating 

the perceived abstract cost of performing different kinds of 

tasks.  Similarly, we would like to be able to model the best 

price to pay for a given HIT based on the work involved. 

Even with the best models, practical aspects of the AMT site 

design might affect the ability of CrowdFlow to deliver the 

promised results.  Thus, we would like to better understand how 

the performance of CrowdFlow in the wild differs from our 

predictions based on models. 
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