
CrowdFlow: Integrating Machine Learning with
Mechanical Turk for Speed-Cost-Quality Flexibility

Alexander J. Quinn1, Benjamin B. Bederson1,2,3, Tom Yeh3, Jimmy Lin1,2

University of Maryland
Human-Computer Interaction Lab

Department of Computer Science
1
 || iSchool

2
 || Institute for Advanced Computer Studies

3

College Park, MD 20742 USA

aq@cs.umd.edu, bederson@cs.umd.edu, tomyeh@umiacs.umd.edu, jimmylin@umd.edu

Abstract

Humans and machines have competing strengths for tasks
such as natural language processing and image
understanding. Whereas humans do these things naturally
with potentially high accuracy, machines offer greater
speed and flexibility. CrowdFlow is our toolkit for a
model for blending the two in order to attain tighter control
over the inherent tradeoffs in speed, cost and quality. With
CrowdFlow, humans and machines work together to do a
set of tasks at a user-specified point in the tradeoff space.
They work symbiotically, with the humans providing
training data to the machine while the machine provides
first cut results to the humans to save effort in cases where
the machine’s answer was already correct. The CrowdFlow
toolkit can be considered as a generalization of our other
domain-specific efforts aimed at enabling cloud computing
services using a variety of computational resources to
achieve various tradeoff points.

1. Introduction
There is a large set of problems that can be solved either by

human computation or machine learning. These include

recognizing the faces of missing children in surveillance videos,

translating documents between languages, or summarizing the

opinions of blogs relating to a particular topic, and many others

from the realms of natural language processing (NLP),

Generally, humans can solve these problems with higher

accuracy than machines alone could do, though human efforts

tend to be costly and time-consuming. Online labor markets

such as Amazon Mechanical Turk (AMT) [13] give more

flexibility than traditional in-person human labor. However, for

most tasks, even this approach is significantly slower and more

expensive than using machines. The advantage of machines is

that they are inexpensive and fast, although they tend to have

lower accuracy, especially when problems are difficult.

Human computation – alternately referred to as crowdsourcing

[5][7], distributed human computation [16], or collective

intelligence [14] - is the practice of distributing work, typically

computation-like tasks, to a large number of humans via the

web. Most crowdsourcing applications represent specific points

in the speed-cost-quality spectrum. For example, games with a

purpose (GWAPs) [22][23] typically keep human labor costs to

a minimum and to use several redundant annotations to ensure

the quality of the final results, all at a cost of time. MonoTrans,

another current project of ours, uses monolingual human

participants in collaboration with machine translation systems to

translate books - resulting in translations which are between

pure machine and pure expert (bilingual) human solutions

[2][9]. Although MonoTrans is not a GWAP, it is similar in that

it yields relatively high quality and low cost, at the expense of

time. Naive uses of AMT provide faster turnaround time (and a

greater range of potential applications) at the expense of cost

and quality.

The principal goal of this research is to discover strategies that

combine the strengths of humans and machines, in order to

move past these two rigid extremes. We would like to give

developers the flexibility to choose any point in the speed-cost-

quality spectrum, and automatically combine human and

machine resources to achieve the desired balance. To do so in a

general way is an ambitious goal.

We are developing a framework for blending capabilities of

humans and machines in order to enable much greater flexibility

with respect to speed-cost-quality. The strategy blends the

flexibility of Amazon Mechanical Turk with machine learning

(or other automated methods).

To demonstrate the framework, we built the CrowdFlow toolkit,

a programming library for distributing tasks between AMT and

an automated system. The toolkit is currently implemented in

Python and should be available for download sometime in

summer 2010. The main advantages of this toolkit are that it

manages the allocation of tasks to humans and machine(s) in

order to achieve the desired speed, cost, or quality level.

An especially powerful element of this framework is that the

humans and machines benefit from one another. Machines

benefit from receiving human-created training data that helps

boost their accuracy. In turn, the human workers may benefit

from having the machine results as a starting point. When the

machine results are correct, the human worker need only verify

that it is correct, rather than doing the task from scratch.

2. Related Work
The idea of a symbiotic relationship between humans and

computers goes back to the 1960s, when Licklider theorized

about the future potential for such systems [11]. More recently,

the idea of complementary computing has been applied to

corporate telephone systems, where callers may be automatically

transferred to a human operator, as opposed to the automated

menu, but only when there was a need and the immediate

availability of operators. Whereas CrowdFlow puts the power to

balance the task load in the hands of the developer, this

telephone system served as an automatic load-balancing

mechanism [6].

The idea of a compromise between automated and human

control has also been used for entertainment-oriented characters

in virtual environments [4]. The AR Facade system allows

participants to interact with characters that are partly AI-

controlled, and partly controlled by human operators in a Wizard

of Oz fashion.

Many research projects have investigated what factors influence

quality in crowd sourced results. Snow found that by collecting

an average of four non-expert labels on AMT for NLP tasks,

they were able to approximate the level of quality ordinarily

provided by expert annotators [19]. Vijayanarasimhan and

Grauman used automated image processing algorithms to try to

approximate the expected cost of procuring image annotations

from human workers based on the visual complexity of the

image [21].

Pricing online work entails the complexities of labor economics

compounded by the specific constraints imposed by AMT or

whatever system is being used. Thus, most research to date has

been limited in scope. In the context of paid question-answer

services, it has been established that offering higher incentives

prices tends to increase the participation by widening the set of

potential respondents [8][10]. However, in most cases, higher

prices do not necessarily yield higher-quality.

Enhancing the capabilities of AMT with richer programming

models was demonstrated by the TurkIt toolkit, which enables

programmers to use human workers in iterative algorithms [12].

The CrowdFlow toolkit is different from TurkIt in that

CrowdFlow specifically ties into machine learning systems and

actively facilitates the pursuit of specific speed-cost-quality

targets.

Some commercial systems such as CrowdFlower (unrelated to

CrowdFlow) [1] utilize well-tuned algorithms for controlling

cheating and enhancing quality. CrowdFlow also supports

active monitoring for cheating, although that is only a secondary

purpose of this work.

3. The CrowdFlow Concept
With CrowdFlow, the user of the system will specify the desired

speed-cost-quality tradeoff. The system will then allocate tasks

to humans and machines in a way that will attempts to fulfill the

user’s specification. By estimating system performance, we can

describe a tradeoff space gamut within which it is possible for

the human manager to manipulate the system.

Speed may be expressed as a time limit for completing the job.

Similarly, cost is the maximum the user is willing to pay to

Turkers and/or for any cloud-based computational resources.

(The latter is planned but not currently implemented in our

toolkit.) Quality is measured relative to some satisfaction

criteria the user provides. It could be a heuristic that combines

multiple criteria.

Making CrowdFlow work entails several challenges. First, we

must be able to estimate, within some confidence interval, the

accuracy of the human workers, even if there is no ground truth.

This is doubly important when you consider that without the

humans’ judgment, it is impossible to estimate the machine’s

accuracy. Also, the system must keep updating the accuracy

estimates and automatically adjust the allocation of tasks as

needed. Second, we need to specify a generic architecture that is

both easily usable by developers of specific problems while still

providing significant value. Third, we need to understand and

support the wide range of human capabilities in this context.

Finally, a stretch goal is to go beyond independent actions and

support true interactive collaboration between human and

machine participants.

Our goal is to keep CrowdFlow as general and broadly

applicable as possible. Specifically, we expect it to be

applicable to problems with these properties:

 Solvable by humans but at a speed or cost that makes scaling

up impractical.

 Solvable by computers (including but not limited to machine

learning algorithms), but with quality less than humans and

less than what the situation requires.

 Divisible into small, independent subtasks.

In particular, we expect it to be especially useful for tasks with

this additional optional property:

 Cannot be solved by machine learning algorithms previously

trained for other problems due to domain-specific challenges.

CrowdFlow uses Turkers in two primary roles:

Figure 1. Tradeoffs resulting from different kinds of systems. (a) human labor only; (b) supervised learning with machine

utilizing human-created training data; (c) automated machine methods with human correction; (d) CrowdFlow

 Worker looks at the question (or other stimulus) and creates

an answer.

 Fixer takes an answer believed to be wrong but easy to fix,

and changes it to make it correct.

Which role is used depends on the specifics of the domain and

the characteristics of the machine learning system. If the

cognitive cost of fixing an incorrect result is low, and/or if the

accuracy of the machine is relatively high, then the fixer role is

preferred. It allows Turkers to benefit from the machine results,

thus reducing their effort, and potentially reducing the required

price and/or time required to get the work done. On the other

hand, if there is an especially high cognitive load associated

with looking at an incorrect result and transforming it into a

correct result, and/or if most of the machines results are wrong,

then it may be easier for Turkers to just do the tasks from

scratch. In our toolkit, the user of the system makes the

decision. Ultimately, we envision that the valve will decide

automatically, or use some combination of each, if needed.

 Validator looks at an answer from a human or machine, and

simply reports if it is correct or not.

 Appraiser takes an answer believed to be wrong and decides

whether it would be easier to fix it or replace it with a new

answer.

 Corrector takes an answer which may or may not be correct,

and either validates that it is correct, fixes it to make it

correct, or replaces it with a new correct answer.

A CrowdFlow implementation will include a fully automated

system, a network of human contributors, and a valve. The

valve is the unit that maintains accuracy estimates and calculates

the optimal allocation of work between the machine and the

various human roles. The conceptual model of CrowdFlow is

shown in Figure 2.

In addition to the task allocation, the valve will also make use of

human results to train the machine (if it is a learning system in

need of further training data). Depending on the problem, it

may also feed the lower quality machine results to humans (i.e.

correctors, validators, etc.) as a starting point, to make the task

easier than simply answering from scratch.

4. Sample applications
We built two sample applications, which demonstrate a subset of

the full model. One of the applications uses human participants

as Workers. The other uses Workers and Fixers. These

domains were chosen because they present different challenges

and thus illustrate the generality of the CrowdFlow approach. In

this section, we describe the context of these applications.

4.1 Text processing
Natural language processing (NLP) has made great strides in

developing algorithms and systems capable of analyzing textual

language, but despite researchers' best efforts, automated

solutions still do not achieve human-level performance in most

tasks. We believe that text processing in general is a promising

application area for CrowdFlow.

One specific application is large-scale sentiment analysis, also

called opinion mining [15]. The goal is to automatically analyze

how people "feel" with respect to a particular target, extracting

such features as polarity (positive or negative) and intensity, as

well as finer-grained structure such as topic facet, rationale, or

precise identification of the opinion holder. It is easy to see the

applications of such technology in areas from marketing to

counter-terrorism to political campaigning. Clearly, paying

human editors to read and summarize all of the opinions is

expensive and not scalable, while automated machines today

aren't good enough. Fortunately, each review can be analyzed

independently and then aggregated in a straightforward way,

making this problem ideally suited to CrowdFlow.

Another important application in NLP is machine translation, or

algorithms and systems for automatically translating text from

one language into another. In today's increasingly multi-lingual

world, the ability to transcend language barriers is important to

many organizations ranging from multinational corporations to

intelligence agencies. Although for certain language pairs,

automated techniques can produce quite understandable output,

the output is far from perfect and is often garbled. Human

translators, on the other hand, are highly-trained and highly-

skilled, making manual translations of large amounts of text

prohibitively expensive. Finally, for the most part, translation

can be parallelized given some appropriate level of granularity

such as a document or individual message. Thus, translation

between human languages could be performed using

CrowdFlow.

4.2 Human detection
Another computing task our framework is well suited to is the

retrospective analysis of surveillance videos. For example, one

might need to find occurrences of a specific type of event in a

long video sequence. Since events of interest often involve

humans, it is necessary to first detect humans in videos before

their activities can be analyzed. Human detection is a problem

that can be solved by human workers more accurately than by

Figure 2. CrowdFlow conceptual model.

machines. Conversely, machines can solve it more cheaply.

When human workers do this kind of work, a video is typically

partitioned and distributed to several workers who can work in

parallel. They may use a specialized GUI to draw bounding

boxes around each human in every frame. On the other hand, to

solve purely by machines, a human detector must be pre-trained

using images of humans obtained from other videos before it can

be applied to the current video. Our hybrid computing

framework makes it possible for human and machine workers to

collaborate in a seamless manner. Human images detected by

the machine workers can be validated and/or fixed by human

workers. Similarly, results obtained from human workers can be

used as additional domain-specific training examples to retrain

and improve the accuracy of the human detector. Most

importantly, at all times the automated valve will attempt to

maintain the right mix of human and machine work to yield the

desired speed, cost, and quality characteristics.

5. Implementation
Our toolkit is implemented in Python and uses Amazon

Mechanical Turk (AMT). Our goal is for the system to

ultimately help developers blend answers from machine learning

classifiers and Turkers to yield results within preset speed-cost-

quality settings. The core CrowdFlow implementation is

structured as an object-oriented Python library that can be used

by programmers developing solutions to a wide variety of

problems. It takes care of the valve’s balancing logic as well as

the low level details of dealing with the AMT web service. The

CrowdFlow library exposes the following domain-independent

components (implemented as Python classes):

 Valve: The controller responsible for allocating tasks to the

machine(s) and human(s), submitting the needed HITs to

AMT, and overseeing the process to ensure that the given

accuracy/cost/time constraints are fulfilled.

 AMT: Handles the mechanics of interfacing with AMT,

including submitting HITs, qualifications (i.e. for informed

consent forms), etc.

 Machine: An abstract class representing a generic machine

learning classifier with train(question,answer),

evaluate(question), init(), and terminate() methods. This will

be overridden at the user of the CrowdFlow library.

 Task: An abstract representation of a task that, when

overridden, contains the specifics of each task instance. This

could contain a URL, a string of text, the full data of an

image, or anything else.

 HITSpecification: Instantiated by the user of the library to

encapsulate details about the HIT, such as the price, required

qualifications, and user interface that the Turkers will use to

complete the HITs.

Since the CrowdFlow framework is intended to be general, we

allow the user to specify the user interface using AMT's native

XML schema, which provides maximum flexibility to support

HITs containing any combination of text, HTML, images, video,

and even dynamic content such as Flash and Java. For example,

supporting the human detection tasks type requires an interface

for drawing bounding boxes over a photograph. Since the exact

XML will usually depend on the specifics of each task, the user

of the library provides a function taking a list of Task instances

as the argument.

The CrowdFlow library also accommodates a wide variety of

machine algorithms by allowing the user to wrap any executable

as a subclass of the Machine class. This means that the service

can be distributed across multiple machines.

To use CrowdFlow to perform a set of tasks, the user of the

library sets up an account with AMT and writes the following

code:

 subclass of the Machine class, providing the necessary glue

code to interface with the user’s machine learning system

 subclass of the Task class, including logic for interpreting and

scoring answers

 function to generate the XML description of the HIT user

interface given a list of tasks

 main function which invokes the valve using the desired

constraints and an instance of the HITSpecification class

In addition, if training data is available, CrowdFlow will use it

to start training the machine. The training data, if available, is

also used to establish the estimated reliability of Turkers.

5.1 Running the job
When the user's program instructs the valve to run the job, it

starts by training the machine with the initial training data (if

any) and establishing the initial accuracy of the machine by

performing cross-validation with slices of the training data. If

no training data was provided, then the user must provide an

accuracy estimate for the machine.

After initializing the machine, the valve uses the given

constraints to calculate an initial split, the proportion of the tasks

to be allocated to humans. Then, it submits the HITs to AMT

and evaluates the rest of the tasks on the machine. It polls

periodically to monitor progress. Incoming results are used to

further train the machine. It also notifies the user’s program of

progress via a callback mechanism.

Once enough HITs have been completed to fulfill the given

constraints, the valve cancels any outstanding HITs. The results

are sent to the calling program via a callback mechanism, and

stored in a database (currently implemented with SQLite). The

database is accessible via the CrowdFlow API.

5.2 Cheating
The CrowdFlow toolkit integrates a mechanism for discouraging

cheating and mitigating its effects. The valve intersperses tasks

with known ground truth (from the training data) along with the

tasks for which answers are being sought. As it monitors the

incoming results, it keeps a running accuracy estimate for each

Turker. Once the Turker has completed a given number of

HITs, if the Turker’s accuracy is below some given threshold,

all results from that Turker are invalidated and the

corresponding tasks are resubmitted so they can be done by

another Turker. At that point, the system sends an e-mail

warning to the Turker that if the quality does not improve, they

will be blocked from doing these HITs. If the Turker continues

to send low-quality results, they are in fact blocked. The

thresholds are supplied by the user via the API.

Currently, this requires that the user provide some initial training

data. In the future, we hope to develop more sophisticated

methods that can detect cheating and estimate accuracy, even

without any initial training data.

A significant downside of this mechanism is that these tasks

with known ground truth are included in the HITs. Thus, it

incurs monetary cost and makes the entire job take longer. For

this reason, in our early trials of the system, we did not use such

a mechanism. In that trial, we had Turkers do 2000 tasks based

on the sentiment polarity domain. Cheating was very prevalent.

Presumably, the Turkers were using scripts to automatically

click on answers at random.

Our analysis of that preliminary data showed a clear distinction

between the cheating and the honest work. The 2,000 HITs

were completed by 15 unique Turkers who did between 3 and

568 HITs each. The 9 cheaters (defined as Turkers whose

answers agreed with expert judgments less than 55% of the

time) accounted for 91% of the HITs. The 6 non-cheaters each

had agreement with expert judgments more than 75% of the

time.

We knew beforehand that cheating might occur and we knew of

several tactics for mitigating it. However, we opted to do that

initial exploration without their use. Since many such strategies

add complication to the HITs or limit which Turkers can do

them, they confound measurements of the speed at which HITs

are accepted and performed. Unfortunately, with cheaters

accounting for 91% of the results, that goal was unattainable.

Several alternatives exist. Delores Labs uses a similar system in

conjunction with a multilevel approach whereby Turkers who do

good work are given special qualifications that give them access

to more HITs reserved specifically for Turkers known to do

good quality work. Amazon also provides facilities for blocking

Turkers whose previous work was marked as unacceptable some

given percent of the time. Sheng proposed using redundant

annotations to reduce noise from cheating and other sources of

wrong answers [18], a strategy which is widely employed. Von

Ahn built games where two participants unknown to each other

answer the same question simultaneously, and they only get

points if their answers agree, thus incenting participants to

submit answers that would generally be considered correct [22].

Although that work was specific to games, the idea of having

users validate each other’s work explicitly has been proposed for

use on AMT [20]. Chen used statistics to identify which work

had been performed by cheaters [3].

The policy of AMT is that Requesters (those who submit HITs)

may refuse payment for work deemed to be of low quality.

Thus, some requesters review the work and refuse payment for

low quality results. Naturally, this approach is unpopular with

Turkers. The web site Turker Nation serves as a de facto

blacklist of Requesters alleged to have used tactics that Turkers

consider unfair. Thus, refusing payment could potentially lead

to negative repercussions. Furthermore, it requires checking the

work for correctness, which necessitates additional labor.

6. Analysis
We wanted to better understand CrowdFlow's ability to flexibly

target a specific point in the speed-cost-quality tradeoff space.

Running CrowdFlow repeatedly for every possible point in the

space would consume time and money needlessly. Instead, we

ran the HITs once and used simulation to explore the space.

In all cases, we used CrowdFlow’s anti-cheating mechanism as

above, sending a warning after 10 poor results and

banning/discounting the Turkers’ work after 20 poor results,

with the threshold set as a program parameter. Only one Turker

was banned/discounted. This may be because we restricted

these HITs to only Turkers with an established approval rating

of at least 80%.

To run the HITs for all of the tasks, we used CrowdFlow and set

the allowable error threshold to 0% (100% accuracy). This way,

the valve directed all of the tasks to Turkers. The result was a

set of human-provided answers to all of the task instances for

which we had ground truth data available. In all cases, the

ground truth data was provided by the authors of the papers

describing the respective machine learning algorithm.

6.1 Human Detection in Photographs
For the human detection domain, we used the fixer role.

Turkers were given a photograph and instructed to ensure that

each human was covered tightly by a bounding box. The images

Figure 3. Human detection domain user interface on Amazon Mechanical Turk.

were taken from the INRIA person data set, which is popular

among image understanding researchers and includes ground

truth for every image. A web interface (Figure 3) for drawing

and editing bounding boxes was provided. It was pre-populated

with results generated by the freely available DetectorPLS

human detection software [17]. Some of the images contained

multiple humans. Results were scored using an algorithm based

on the overlap between the Turker's bounding boxes and the

ground truth bounding boxes. Since we wanted to gain

experience with the fixer role, we used only images for which

the machine detected at least one human - about half of the total

set. Among this subset of 120 images, the machine’s accuracy

is 60% using the same scoring algorithm.

It took 3 hours 42 minutes to get the results, including the time

to rerun some HITs due to cheating. The average accuracy of

the results from the Turkers was 90%. Payment was rejected for

the one Turker whose work was rejected and resubmitted due to

significant cheating. Thus, the total cost was $2.40.

Based on these results, we can estimate the work split required

to achieve any other point in the tradeoff space.

Consider a few possible scenarios, supposing we had 1000 of

these tasks and the general cost, time, and accuracy per task

remained the same.

6.1.1 Time constraint
If time is the chosen constraint, then the human load LH can be

estimated dividing the time target T by 111 seconds, the

observed time per hit (start to finish, including the additional

time at it by anti-cheating measures).

LH =
T

111 seconds

Then, the cost C and combined accuracy A are found as

C = $0.02 • LH

A = 90% • LH + 60% • (1000 - LH)

For example, if we limited the time to 10 hours, we would have

collected 324 judgments at 90% accuracy, with the remaining

676 tasks done by the machine at 60% accuracy. Thus, we

would have an overall accuracy of 70%, costing $6.48, and

taking 10 hours.

6.1.2 Cost constraint
Calculating based on a cost constraint is done similarly. We

divide the cost limit C by the price per HIT to get the human

load.

LH =
C

$0.02

Then, the combine accuracy A is found as above and the time T

as follows:

T = LH • 111 seconds

For example, doing the same 1,000 tasks while limiting the cost

to $5, we would have had 250 human judgments and 750

machine judgments, for an overall accuracy of 68%, costing $5,

and taking 7 hours 42 minutes.

6.1.3 Accuracy constraint
Calculating the human load for an accuracy constraint A, We

start with the equation for A.

A =
90% • LH + 60% • LM

1000
 =

90% • LH + 60% • (1000 - LH)

1000

Then, we solve for LH.

LH = 1000 •
A - 60%

90% - 60%

Cost and time are calculated the same way as above.

For example, if we fixed the accuracy A for those same 1,000

tasks at 70%, we would have needed to give 333 tasks to

Turkers, for a total accuracy of 70%, costing $6.66, and taking

10 hours 16 minutes.

6.2 Sentiment Polarity of Movie Reviews
The sentiment clarity analysis task consisted of deciding if a

movie review is more positive or negative. The classification

code is provided with the LingPipe natural language processing

toolkit for Java (http://alias i.com/lingpipe/). It uses the

algorithm and movie review data and ground truth described by

Pang & Lee [15]. The data set consists of 2,000 movie reviews

taken from the IMDB discussion group. The average length of a

review is 612 words. The Turkers agreed to an informed consent

form via AMT's qualification mechanism. Each HIT (Figure)

presents three movie reviews at a time and uses radio buttons to

let the Turker enter a judgment of "positive" or "negative".

Turkers were paid US$0.05 per HIT, with each HIT containing 3

movie reviews

Over a period of 8 hours 7 minutes, the Turkers judged a total of

1083 movie reviews (361 HITs) for a total cost of $54.35. No

Turker was discounted due to cheating. The overall human

accuracy was 91.0%. In comparison, the machine classifier can

Figure 4. Sentiment polarity analysis user interface on

Amazon Mechanical Turk.

do the same tasks with only 83.5% accuracy. A similar

extrapolation could be done with this domain.

7. Discussion and future work
This toolkit is the first step in this line of research. It does not

use all of the roles and possibilities we envision for CrowdFlow,

nor does it resolve all of the difficult questions that would be

necessary to fully realize the vision. However, the flexibility of

CrowdFlow to provide a spectrum of speed-cost-quality

tradeoffs is evident from the simulations.

The experiments we have run to date exercise the two directions

of benefit, humans providing training data to machines and

machines providing imperfect results to save the humans work.

However, as Figure 5 illustrates, neither of these domains

exercise both direction at the same time. Ultimately, that will be

the goal.

Looking forward, we would like to know what factors affect the

speed at which Turkers will accept HITs, and to what extent the

current AMT design is influencing the economics. This would

be useful for maximizing the benefits of AMT, but also to

inform the design of any future online on-demand labor market

place.

Regarding the roles we described above, we plan to do more

evaluations to understand how those can be used to optimize the

output with CrowdFlow. To do that, we will need to know how

cognitively expensive it is for a human to judge whether a

machine generated answer is good enough to correct versus

clearing the answer and starting over. Perhaps research methods

from economics could guide such an exportation by estimating

the perceived abstract cost of performing different kinds of

tasks. Similarly, we would like to be able to model the best

price to pay for a given HIT based on the work involved.

Even with the best models, practical aspects of the AMT site

design might affect the ability of CrowdFlow to deliver the

promised results. Thus, we would like to better understand how

the performance of CrowdFlow in the wild differs from our

predictions based on models.

8. References
[1] Barrett, V. Dolores Labs Vets Web Sites On The Cheap -

Forbes.com. Forbes Magazine, 2009.

http://www.forbes.com/forbes/2009/0330/048-you-know-

it.html.

[2] Bederson, B. B., Hu, C., & Resnik, P. (2010) Translation

by Interactive Collaboration between Monolingual Users,

Proceedings of Graphics Interface (GI 2010), (in press).

[3] Chen, K., Wu, C., Chang, Y., and Lei, C. A

crowdsourceable QoE evaluation framework for

multimedia content. Proceedings of the seventeen ACM

international conference on Multimedia, ACM (2009), 491-

500.

[4] Dow, S. Mehta, M., MacIntyre, B., Mateas, M.. Eliza meets

the Wizard-of-Oz: Blending Machine and Human Control

of Embodied Characters. In CHI 2010, 2010.

[5] Hoffmann, L. Crowd control. Communications of the ACM

52, 3 (2009), 16-17.

[6] Horvitz, E., Paek, T.. Complementary computing: policies

for transferring callers from dialog systems to human

receptionists, User Modeling and User-Adapted Interaction,

2007.

[7] Howe, Jeff, The Rise of Crowdsourcing. Wired Magazine,

Issue 14.06, June 2006.

[8] Hsieh, G., Kraut, R. E., Hudson, S. E.. Why Pay?:

Exploring How Financial Incentives are Used for Question

& Answer. In CHI 2010.

Figure 5. The human detection example (left) illustrates one direction of feedback, with computers helping Turkers.

The sentiment analysis domain (right) illustrates the other direction, with the Turkers providing training data.

[9] Hu,, C. (2009) Collaborative translation by monolingual

users, In Proceedings of the 27th international conference

extended abstracts on Human factors in computing systems

(CHI 2009), pp. 3105-3108, Boston, MA, USA: ACM,

2009.

[10] Jeon GYJ, Kim YM, Chen Y. Re-examining price as a

predictor of answer quality in an online Q&A site. In CHI

2010.

[11] Licklider, J. C. R. Man-computer symbiosis. In IRE

transactions on human factors in electronics, 1960.

[12] Little, G., Chilton, L. B., Goldman, M., and Miller, R. C.

2009. TurkIt: tools for iterative tasks on mechanical Turk.

In Proceedings of the ACM SIGKDD Workshop on Human

Computation (Paris, France, June 28 - 28, 2009). P.

Bennett, R. Chandrasekar, M. Chickering, P. Ipeirotis, E.

Law, A. Mityagin, F. Provost, and L. von Ahn, Eds.

HCOMP '09. ACM, New York, NY, 29-30.

DOI=http://doi.acm.org/10.1145/1600150.1600159

[13] Mechanical Turk. http://mturk.com.

[14] Malone, T.W., Laubacher, R., and Dellarocas, C.

Harnessing Crowds: Mapping the Genome of Collective

Intelligence. (February 3, 2009). MIT Sloan Research

Paper No. 4732-09.

[15] Pang, B., Lee, L., and Vaithyanathan, S. 2002. Thumbs

up?: sentiment classification using machine learning

techniques. In Proceedings of the Acl-02 Conference on

Empirical Methods in Natural Language Processing -

Volume 10 Annual Meeting of the ACL. Association for

Computational Linguistics, Morristown, NJ, 79-86. DOI=

http://dx.doi.org/10.3115/1118693.1118704

[16] Quinn, A. J., Bederson, B. (2009) A Taxonomy Of

Distributed Human Computation. Technical Report,

University of Maryland, Human-Computer Interaction Lab,

HCIL-2009-23.

[17] Schwartz, W. R., Kembhavi, A., Harwood, D., Davis, L. S..

Human Detection Using Partial Least Squares Analysis. In

Proceedings of the ICCV. Kyoto, Japan, 2009

[18] Sheng, V. S., Provost, F., and Ipeirotis, P. G. 2008. Get

another label? improving data quality and data mining

using multiple, noisy labelers. In Proceeding of the 14th

ACM SIGKDD international Conference on Knowledge

Discovery and Data Mining (Las Vegas, Nevada, USA,

August 24 - 27, 2008). KDD '08. ACM, New York, NY,

614-622.

[19] Snow, R., O'Connor, B., Jurafsky, D., and Ng, A.Y. Cheap

and fast---but is it good?: evaluating non-expert annotations

for natural language tasks. Proceedings of the Conference

on Empirical Methods in Natural Language Processing,

Association for Computational Linguistics (EMNLP 2008),

254-263.

[20] Sorokin, A., Forsyth, D. Utility Data annotation with

Amazon Mechanical Turk. In InterNet08, pages 1-8, 2008.

[21] Vijayanarasimhan, S. and Grauman, K. What’s It Going to

Cost You?: Predicting Effort vs. Informativeness for Multi-

Label Image Annotations. CVPR, pp.2262-2269, In

Proceedings of the 2009 IEEE Conference on Computer

Vision and Pattern Recognition, 2009.

[22] von Ahn, L. and Dabbish, L. 2004. Labeling images with a

computer game. In Proceedings of the SIGCHI Co,nference

on Human Factors in Computing Systems (Vienna, Austria,

April 24 – 29, 2004). CHI ’04. ACM, New York, NY, 319-

326. DOI= http://doi.acm.org/10.1145/985692.985733

[23] von Ahn, L. v. 2006. Games with a Purpose. Computer 39,

6 (Jun. 2006), 92-94.

DOI=http://dx.doi.org/10.1109/MC.2006.196

[24] von Ahn, L., Graham, M., I., Dabbish, L., Kitchin, D.,

Blum, L. Solving Hard AI Problems With Computer

Games. CMU Technical Report CMU-CS-02-191, Nov.

2002

