
AskSheet: Efficient Human Computation for
Decision Making with Spreadsheets

Alexander J. Quinn
1,

2, Benjamin B. Bederson

1,

2,

3
University of Maryland, College Park

Human-Computer Interaction Lab
1 :: Computer Science

2 :: Institute for Advanced Computer Studies
3

College Park, Maryland 20740
{aq, bederson}@cs.umd.edu

ABSTRACT
The wealth of resources online has empowered individuals
and businesses with an unprecedented volume of information
to aid in decision making processes. However, finding the
many details needed for a non-trivial decision can be very
labor-intensive. We present AskSheet, a general system that
leverages human computation to acquire the inputs to an
arbitrary decision spreadsheet provided by the user. The key
innovation is the ability to prioritize the inputs by analyzing
the user’s spreadsheet formulas to calculate value of
information for each of the blanks. By directing workers to
find the details that impact the end result most, it results in a
conclusive decision without gathering all of the inputs.

Author keywords
Human computation; crowdsourcing; value of information

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
The explosive growth in availability of information online
has opened a bounty of resources for people making plans
and strategic decisions. They can now turn to web pages and
online databases for questions requiring objective
information. Subjective questions can often be answered by
a post on a social network or discussion forum, or a simple
email or chat message to a trusted colleague.

The challenge comes when trying to leverage these mediums
for more complex problems that require more thorough
analysis. While it may be easy to find an answer to a specific
question, a solution to the overarching problem may be more
elusive. Consider the following questions:

Where should I buy groceries this week to save money?
Where/when can I vacation to balance cost vs. preference?
What graduate programs should I apply to?

Each person will base their decision on their own unique set
of factors. Of course, there can never be a database with up-
to-date details on every possible aspect of such decisions.
The details may be locale-specific or time-sensitive.

When the outcome is worth some effort, a tactic used by
many decision-makers is to create a spreadsheet with tables
containing the relevant dimensions of the decision problem.
If the user is fluent with the use of spreadsheet formulas—as
many in the business world are—and already has a clear idea
how she wants to decide (i.e., if she had all information
available), then she can even add formulas to display the
decision result. At that point, it is only a matter of gathering
the details to fill in the blank cells in the spreadsheet.

In reality, time to gather the information is limited, so we
compromise. If the value of the outcome does not justify
such an effort, we often accept a suboptimal decision based
on partial information or take the first option that meets some
baseline standard. This behavior by individual decision-
makers, termed “satisficing” by Simon [23], results from the
inherent tradeoff between the cost of deciding and the benefit
of a well-reasoned decision that utilizes as much information
as possible. This project aims to help people do better.

The rapid development of online task markets, such as
Amazon Mechanical Turk, has opened new options. Now,
one can easily hire web workers to gather information,
paying a small reward for a small amount of work.

A commonly overlooked limitation of most such systems is
that they assume every question is mandatory. Requests are
sent and then the requester waits until all results have been
received. In contrast, individual information foraging tends
to follow a dynamic workflow [17]. Especially with
decision-making, users seek out the information that will
have the greatest impact on the final result, constantly
adjusting the strategy based on the information seen so far.

AskSheet is a research prototype we built to demonstrate a
new method of coordinating workers to support decision
making tasks. To reduce human effort wasted gathering
unnecessary information, it leverages a model of the decision
provided by the user in the form of a spreadsheet. By
efficiently offloading the information task, a decision-maker
may be able to avert the all too common tendency to
compromise, potentially leading to a more optimal decision.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CSCW'14, February 15 - 19 2014, Baltimore, MD, USA
Copyright 2014 ACM 978-1-4503-2540-0/14/02…$15.00.
http://dx.doi.org/10.1145/2531602.2531728

To use AskSheet, the user (someone with a decision to make)
starts with an ordinary spreadsheet with formulas that will
calculate the end result. Then, in cells where information is
needed, the user enters a special =ASK(…) formula to
indicate to the server that some information is needed in that
cell. The parameters specify such details as the type and
range of values that are expected. AskSheet analyzes the
formulas and manages the sending of requests. To reduce
human effort, it calculates the value of information [13,21]
of each =ASK(…) formula and eliminates those that cannot
affect the final result. With this analysis, it aggressively
prioritizes the inputs to minimize unnecessary requests.

The key contribution of this paper is a fully operational
system for efficiently coordinating crowd workers to gather
the input data for spreadsheet decision models.

Although our efforts so far have targeted workflows with
Mechanical Turk, our longer-term goals for AskSheet extend
to other types of group decision workflows, such as
screening job applicants. That vision is reflected in the
design of the system, and will be discussed later in the paper.

NEED FOR RESEARCH
AskSheet can be viewed as efficient human computation
driven by a declarative notation based on spreadsheets. We
examine the related work as such.

Efficient human computation
Human computation is a paradigm for computation that
delegates to humans parts of the problem that computers
cannot solve adequately [18,25]. Often, it starts with the
assumption that you have a set of questions for which you
would like to receive answers. Many such systems aim to
reduce the number of tasks that workers are asked to perform
by adjusting the number of judgments per question [10,22],
the number of iterations on incremental improvement
jobs [6,8,15,22], the strategy for decomposing tasks into
subtasks [2,3], or by delegating some tasks to machines [19].

AskSheet is different in that it optimizes the number of
questions—akin to telling the user, “No, actually you don’t
need these ones.” A user shopping for a house might ask for
several facts about each of many homes for sale, but if
AskSheet can determine that some will not affect the user’s
final choice, those questions will be culled, and not asked.
This notion of “efficiency” has been relatively unexplored.

AskSheet is built on the premise that human time is more
precious and plentiful than CPU time, and thus any
opportunity to use machine cycles to reduce human burden
is a positive value proposition. Active learning [24], a
machine learning technique, does this to some extent, but its
focus is on efficient training of predictive models, as opposed
to solving a single, monolithic problem, such as a decision.

Declarative crowdsourcing
Several recent projects have demonstrated a new, declarative
approach to describing human computation processes in
SQL [7,16]. We see such work (and our own) as exploring
a big idea in crowdsourcing: By firmly separating the

computational logic from the details of posting tasks and
managing responses, the workflow can be optimized using
computational methods that are independent of those details.

Spreadsheets
The system with the perhaps most resemblance to AskSheet
is SmartSheet, a commercial web-based platform for many
kinds of collaboration, including crowdsourcing via
Mechanical Turk [9]. Using the site, a user creates a
spreadsheet-like document with the row and column headers,
and then issues a request for workers to fill in columns with
needed data. However, once the process has begun, it has no
automatic mechanism to stop once enough information has
been gathered to solve the user’s overarching problem.

Although not related to crowdsourcing or collaboration, the
implementation of AskSheet has parallels with an early
spreadsheet system by Lewis that operated on uncertain
values, represented as inequality constraints [14]. They were
propagated throughout the spreadsheet with formulas. As we
will explain, AskSheet treats every cell as a random variable,
which is similarly propagated through the formulas.

ASKSHEET
We describe the use of AskSheet with a simplified
illustration. Later, we will show how the system supports
applications with more realistic requirements.

Example: Grocery stores
Andrew operates a catering business that needs to buy a
substantial amount of food each week—typically about 50
items totaling about $1,000. Depending on the week, any of
the 5 grocery stores nearby might have some of the items on
sale. All of the grocery stores make their weekly flyers
available online in PDF format, but there is no API or central
database of current grocery prices. Any such database would
have to contain prices for every locality, and update them
weekly as prices change. Therefore, Andrew will hire web
workers to search through the flyers for sale prices on the
items so he can get the best deal possible at a single store.

Starting with a blank spreadsheet, he enters the needed
ingredients, the names of the stores, and some formulas. (For
compactness, we use only 9 items and 3 stores.)

Cells D11, E11, and F11 calculate the sums of the prices at
each stores. Cell B12 calculates the minimum of those totals.

Cell B13 selects the name of the store with the lowest total.
Note that =SUM(…), =MIN(…), =INDEX(…), and
=MATCH(…) are standard functions found in most
spreadsheet applications; they are not specific to AskSheet.

In cells D2:F10 (columns D through F, rows 2 through 10),
he will enter =ASK(…) formulas. =ASK(…) formulas are
specific to AskSheet, and indicate requests for information.

The formula in D2, equivalent to =ASK("$10 to $15"),
means that Andrew expects the 32 ounces of ground coffee
to cost between $10 and $15. (More details of the =ASK(…)
function parameters are given in Figure 2.)

Note that if the price ranges he supplied were too wide, the
prioritization might be less effective. The system might
request the other value unnecessarily. On the other hand, if
the ranges were too narrow, it might stop too soon.

Next, he enters some instructions for the workers and other
details the system needs in order to post the tasks and manage
the quality of the results. The “Prioritization” slider controls
how many inputs to include in each batch.

Based on the contents and structure of the spreadsheet,
AskSheet generates a form for entering data. If Enforce
bounds was selected in the setup, then AskSheet will require
that workers enter only values in the specified bounds. This
may enhance data quality in some cases (e.g., 5-star rating
must be between 1 and 5) but would not be appropriate for
values like prices where values outside the bounds may be
possible, or even desirable (e.g., lower price than expected).

AskSheet posts the tasks and manages the entire process.
Andrew can monitor the progress from a dashboard. The
braced expressions show the possible range of output values
for each cell. The shaded colors indicate the relative

priorities of the cells. Obtaining the dark green cells first
would provide the greatest opportunity to eliminate other
cells. The system will request those inputs first, in order to
reduce the overall human effort—and hence, Andrew’s cost.

As results are received, AskSheet recalculates the priorities
based on the new information, and posts new tasks, as
needed. When enough data has been entered to calculate a
conclusive answer, it displays the result of that formula.

In this fictional illustration, 16 of the 27 inputs have been
entered. The range of possible totals for each of the stores
has been constrained just enough that a winner can be
conclusively determined. The worst case (upper bound) of
Store C ($68) would still be better than the best case (lower
bound) of either Store B ($71) or Store A ($85).

A primary benefit of using AskSheet is that it does not need
to fulfill all of the requests. It is able to obtain a conclusive
result that satisfies the user’s spreadsheet model, with only
partial information. This is similar to what individuals do
when they have seen enough information to make a decision,
even without seeing every detail of every alternative. For
Andrew, this means lower cost and/or faster turnaround.

It should be emphasized that AskSheet does not depend on
this particular decision model. The user starts with a blank
spreadsheet and creates a model based on their needs. The
example models in this paper are not part of AskSheet itself.

Usability
Like most current research in human computation, our
primary focus is on new ways to coordinate the crowd to
accomplish work. The interface we use to control AskSheet
may someday be adapted for use by general users, but its
usability is not an intended contribution of this work.
Although many users are fluent with the use of spreadsheet
formulas, many more are not. In the future, we plan to refine

the user experience of creating models, starting the requests,
and viewing progress. To support users who are not experts
in spreadsheets, we plan to build simpler interfaces for
common models, effectively hiding the spreadsheet details.

AskSheet is however designed to streamline the activities of
workers. To that end, it balances the goal of gathering inputs
in the most efficient order with the reality that workers can
be more efficient if they can gather several inputs from each
web search conducted.

IMPLEMENTATION
AskSheet is implemented as a web application coded in
Python. The user creates the model in Google Spreadsheets
and imports it into AskSheet, which extracts the formulas.

To illustrate how the prioritization algorithms work, we will
refer to this very trivial model.

The first step is to parse each formula into an abstract syntax
tree (AST). These trees are joined wherever there is a cell
reference, resulting in the structure in a structure like this.

By analyzing the dependence relationships between cells, the
planner can infer which cells the user is likely to care about
(e.g., the =INDEX(…) function in cell B10 of the grocery
shopping example). We call these the roots of the resulting
graph because they depend on other cells, but other cells do
not depend on them. The root of this trivial model is C1.

The goal is to find an ordering of the requests that will
minimize the expected cost of evaluating the model—finding
a conclusive result for all root cells. We think of the cost of
an ordering as the expected sum of the costs from all requests
that would be fulfilled (i.e., not eliminated) if they were
gathered in that order. We define the resulting expected
model cost of fulfilling a particular request as the expected
cost of evaluating the entire model, if that request were
fulfilled next. This cost should be regarded as a heuristic.

(In this section, we refer to =ASK(…)functions as requests
or r since i (inputs) would be confusing as a variable name.)

An advantage of using spreadsheets for this work is that the
order of evaluation for most operations is effectively
arbitrary. Often, evaluating operands in one order can yield
a higher probability of eliminating one of the others by short-
circuit evaluation or some form of lazy evaluation. This is
the fundamental advantage that AskSheet exploits.

When evaluating the comparison in the =IF(…) function,
we could evaluate A1 and B1 in either order: (A1, B1) or
(B1, A1). To prioritize, AskSheet considers the range of
possible values for A1 and B1, from the =ASK(…) formulas.

In our current implementation, every possible value is treated
as equally probable, i.e., discrete uniform distribution.

Suppose we choose the latter and evaluate B1 first. If the
request in B1 receives any of the values 6, 7, 8, 9, or 10, then
the comparison A1 < B1 must be true, no matter which value
A1 receives. Also, if B1 is 1, then A1 < B1 must be false.
Therefore, we would only need A1 if B1 turns out to be 2, 3,
4, or 5. In other words, Pr(need A1 | have B1) = 0.4.

On the other hand, if we evaluate A1 first, no matter what the
value, we will need B1. Thus, Pr(need B1 | have A1) = 1.0.

Based on the above, we can say that the resulting expected
model cost of fulfilling A1 first is 2.0 because if A1 is
fulfilled next, we will definitely need both B1 (cost=1) and
A1 (cost=1) with probability 1.0. The resulting expected
model cost of fulfilling B1 is 1.4 because we will need A1
with probability 0.4 and we will need B1 will probability 1.0.

More generally, for any model M we will calculate the
expected resulting model cost of fulfilling each request that
the root cells depend on. Sorting by that will give us our final
ordering. The resulting expected model cost is calculated as:

E൫Cሺܯሻ൯ ൌ CሺݎሻPrሺܯ	needs	ݎሻ	
∈௦

… where C(r) is the cost specified in the ASK(…)function
parameters, reqs is the set of all requests in the model, C(M)
is the cost of evaluating the model, and Pr(M needs r) is the
probability that evaluating every root in the model will
require fulfilling request r. That can in turn be expressed as
the probability that any root node will need request r.	

Prሺܯ	needs	ݎሻ ൌ ܲ ൭ ሧ ݊	needs	ݎ
	∈௧௦

൱

The probability that a particular node n needs a request r is
calculated recursively:

 If n is a request and n = r, then P(n needs r) = 1.
(Every request node needs itself.)

 If n is a request and n ≠ r, then P(n needs r) = 0.
(A request node never needs any other nodes.)

 For any other node type, the probability is:

Prሺn	needs	rሻൌPrቌ ሧ 		ݎ	needs	 ∧ 	݊	needs	
∈ை௦

ቍ

… where Opsn is the set of operands (i.e., child nodes) to n.

For simple arithmetic operations, P(n needs op)=1 for all of
the operands, since you cannot calculate an arithmetic
operation without all of its operands (except for the case of
multiplication by zero). For example, to calculate a + b, you
need both a and b, regardless of the bounds or distributions.

AskSheet prioritizes the requests by the conditional expected
model cost E(C(M | r next)), conditioned on acquiring each
request r next. It is equivalent to the this utility function:

Uሺݎሻ ൌ E൫Cሺܯሻ൯ െ EሺCሺܯሻ	|	ݎ	nextሻ

In essence, this is the expected overall savings if we acquired
r next, versus choosing parameters randomly at every step.

Note that the cost is based on marginal probabilities over all
possible values of other inputs in the model. The calculations
assume parameters are evaluated in random order by default.
(For =IF(…), the condition is always evaluated first since it
would not make sense to evaluate the value parameters first.)

For operations that can potentially be optimized to eliminate
requests—including the comparison operators, =MIN(…),
=MAX(…), =IF(…), and many others—calculating the
probability that the node needs each operand generally
entails calculating the output distribution (probability mass
function) of the node—every possible output value and its
probability relative to the decision inputs (random variables).

Operations
The current system supports a small but important subset of
core spreadsheet formulas: =IF(…), =MAX(…), =MIN(…),
=SUM(…), =AND(…), =OR(…), =NOT(…), =INDEX(…),
=MATCH(…), and operators (+, -, /, *, =, <, <=, !=, >=, >).
Efficient algorithms for calculating the output distribution
and need probabilities are specific to each these. Below, we
show how these are calculated for one example.

Example: =MAX(…)
The output distribution for =MAX(…) is the joint distribution
of possible values the formula could take, for all possible
values of its parameters.	

Since =MAX(…) is synonymous with the kth order statistic
for a discrete random variable with k possible values, we can
use the probability mass function for discrete order statistics:

Prሺmax ൌ ݇ሻ ൌ Prሺmax ݇ሻ െ Pr	ሺmax ൏ ݇ሻ

ൌPrቌ ሥ ݇
∈ை௦

ቍ െ Prቌ ሥ ൏ ݇
∈ை௦

ቍ

The need probability Pr(max needs op) for each operand of
=MAX(…) is calculated on the premise that an operand is
needed only when there was some chance that it could be
greater than the maximum. In other words, for each possible
max value k in the output distribution calculated above, we
temporarily assume that was the max value, and then set the
cost for that case as the sum of expected costs for every
operand op for which Pr(op > k) > 0. With that, we calculate
an expected value over every possible value of k.

Scope
AskSheet offers a unified process for efficient application of
crowdsourcing to a wide range of decision making tasks. It
is especially suited to decisions that entail gathering a lot of
details and then selecting a subset of them, typically based
on the relation to the rest. This includes the examples above
and, more generally, any problem that can be modeled using
operations such as minimum, maximum, if/else,
conditionals, and so forth. Since expected bounds of the
inputs are specified by the user a priori, such operations can
often be precisely computed with only partial information.

AskSheet is not intended for needle-in-a-haystack search
problems (e.g., find Mayor X’s salary). Also excluded are
problems where a large set of information is gathered and all
of it is to be used (e.g., find salaries of all mayors in the US).

LIMITATIONS OF CURRENT IMPLEMENTATION
The calculations described above have enabled us to test the
core concept embodied by AskSheet. Below, we summarize
some known limitations and outline some potential solutions.

Performance
In our current implementation, models with =MAX(…) and
=MIN(…) formulas are currently practical only in modest
sizes (i.e., up to around 30-40 parameters). This affects
weighted sums models, a common type of decision model.

There is no closed form expression for the running time,
since it depends on specifics of the model, such as how
closely spaced the weights are. For a weighted sums model
with a alternatives each having b attributes with c levels per
attribute, and all weights being the same, running time is
O(a2b2c). The theoretical worst case, O(a2b2c2), could only
occur if the weights were spaced in an extremely unlikely
pattern. These were determined by analyzing the code.

The algorithm can compute prioritization in polynomial time
because instead of considering every possible permutation, it
simply ranks requests by the expected cost savings that
would result if each one were fulfilled next. That can be
calculated in polynomial time for a given request, and so
calculating it for every request is also polynomial.

To understand this practically, we measured the time to
prioritize inputs in several WSM models. All weights were
set equal to 1 (the best case) and we assumed 5 levels for
every attribute. This represents a decision where all
attributes are scored from 1 to 5 and are equally important.
As a spreadsheet, it would occupy a × b cells, plus the labels.

These were run on a desktop computer with an Intel model
i7-3770K 3.50 GHz CPU and 32 GB RAM using the
Python 2.7 interpreter. The results are shown in Figure 1.

This time is important because when a worker submits a
form, the prioritization must be recalculated in real-time,
before the answers are accepted. AskSheet only posts a small
number of tasks (HITs) at a given time, to avoid collecting
responses that will not be needed. To make this possible, as
a worker submits a form, it recalculates the prioritization
and, if more inputs from that role (HIT Type) are still needed,
it posts another task—all before accepting the worker’s data.

 number of attributes

nu
m

be
r

of

al
te

rn
at

iv
es

 5 10 15 20 25
10 0.1 0.5 1.1 2.0 2.9
20 0.6 2.2 4.7 8.2 12.0
30 1.5 5.3 11.8 20.9 30.9
40 2.9 10.6 23.4 42.8 61.9
50 5.0 18.3 41.6 73.8 108.8

Figure 1. Time (secs.) to prioritize a benchmark model
based on the sum of 5-star ratings for each alternative.

To reduce the recalculation time, we could keep the state
from the last calculation, and then update the output
distributions and need probabilities incrementally.
Recalculation time is most important since it affects the
delay that workers experience when submitting the form.

To improve the initial calculation time, we are aware of
several untapped opportunities for optimizing the code.
Using dynamic programming, we previously improved
performance of calculations for the =SUM(…) operation. We
believe a similar approach could be used for other operations.

For some operations, we have not found computationally
feasible algorithms for calculating output distributions and
need probabilities. These include =RANK(…) and
=LARGE(…) (pick nth largest value). To support those, and
also increase the number of parameters that can be supported
with the current set of operations, we are exploring options
for approximating the probabilities by random sampling.
This is complicated by the large number of parameters.

Finally, since AskSheet is implemented in pure Python, these
times could be improved by a constant—but substantial—
factor by porting critical modules to C and splitting the
calculations acrosss multiple CPU cores. The algorithms are
extremely parellelizable because they compute the
probabilities for a large number of scenarios.

Dependence between formulas
The algorithms that calculate output distribution and need
probabilities use only local information (i.e., at the level of a
particular function or operator), so they cannot detect
dependence between cells. For example, in this simple
model, AskSheet should detect that A1 and B1 refer to the
same quantity, and thus elimincate A1, i.e., Pr(need A1)=0.0.

The problem is that when analyzing the condition in C1, it
has no knowledge of the relationshiop between A1 and B1.
Although it calculates that both A1 and A2 have the same
distribution (discrete uniform, 1 to 10), it cannot detect the
dependence between the two, and so it fails to eliminate A1.

In our experience, the most common area where this issue is
apparent is with comparison operators, as well as spreadsheet
functions that depend on comparisons internally, such as
table lookups. For example, in the grocery shopping
example above, the system will continue to calculate the
entire total cost for a store, even though the actual number is
not needed to determine which store is the winner.

These issues do not arise with tree-structured models
(i.e., each cell referenced by at most one formula). They only
arise in DAG-structured models, because the local
information used by the probability calculations does not
provide information on these relationships.

A potential solution we intend to explore is to simplify the
formulas algebraically before calculating need probabilities
for comparison operators. Software libraries exist for
performing such algebraic manipulation [11].

When algebraic simplification determines two nodes to be
the same quantity, then the output distribution of the equality
operator will be Pr(node=True)=1.0. This could be applied
to functions that inherently involve comparison operations
(e.g., table lookups), following a strategy similar to symbolic
evaluation, a technique used in software testing [5].

These solutions might not fully eliminate the issue of
dependence, which affects any calculation of conjunctions
(A ∧ B) or disjunctions (A ∨ B). However, it would reduce
the effect on the prioritizations.

Figure 2. =ASK(…) formula parameters are at the core of the strategy for partitioning inputs into efficient tasks.

BATCHING INPUTS FOR WORKER EFFICIENCY
Up to now, we have assumed that that inputs are acquired
one at a time. To make the task more efficient for workers,
AskSheet can batch inputs that involve the same type of
activity (e.g. searching for fuel economy specifications) and,
where possible, the same source information (e.g., pages
about a single car model). The user sets the batch size.

In addition, the parameters to =ASK(…)allow it to split the
job into multiple roles (HIT Types) which are run in parallel.
(See Figure 2.) The example below illustrates how the job
of gathering information to find an acceptable pediatrician is
split into four separate roles which run in parallel.

Field trial #1: Find a pediatrician
Alan needs to find a pediatrician for his daughter. He values
information from doctor rating sites but does not trust one
site alone. Recognizing that these sources alone would not
be sufficient to find the best pediatrician, he will be satisfied
to find one that matches his basic requirements:

 Average rating at RateMDs.com is at least 4 stars.
 Average rating at HealthGrades.com is least 80% positive.
 The doctor accepts Alan's insurance, CareFirst.
 Driving to the office takes no more than 20 minutes.

We tested this scenario using the model in Figure 3. The root
formula in F53 simply evaluates whether any of the doctors
conforms. Recall that Alan will be satisfied with any doctor
who meets his minimum criteria. Thus, AskSheet’s task is
ostensibly just to determine whether any doctor satisfies the
criteria. Once any doctor has been confirmed to fit the
criteria, the value of F53 will be TRUE, and no more inputs
are needed. Columns B, C, D, and E each becomes a separate
role (HIT Type) which runs in parallel.

Note that the current implementation of AskSheet requires
the user to fill in the row labels in the model. For this
example, we found a list of pediatricians online. In the
future, we plan to extend AskSheet so that workers can
gather the row labels and extend the spreadsheet.

We received a conclusive answer in 47 minutes. With the
prioritization, AskSheet required only 36 of the 200 inputs.
The total cost was $5.67 with one judgment per input. We
paid $0.63 per task. The 6 workers spent a combined total of
58 minutes, for an average hourly rate of $5.87 per hour.

Had all of the 200 inputs been fulfilled (i.e., the approach
used by tools such as SmartSheet) the total cost would have
been $31.50. The optimizations saved $25.83 (82%).

OPTIMALITY
Full optimality would be achieved only if a few simplifying
assumptions were satisfied. They are listed below. To the
extent these are violated, optimality may be diminished.

 Input values are presumed to be uniformly distributed and
mutually independent. This affects the calculated output
distributions, which are used to calculate need
probabilities. For =MAX(…), AskSheet effectively
prioritizes inputs for the top contenders in order to rapidly
differentiate which is the maximum. This assumption may
lead to inaccurate selection of the top contenders.

 Bounds given in =ASK(…) formulas are presumed
accurate. If there are actual values outside the bounds
(e.g., lower price than anticipated), it may stop too soon.

 Each cell is referenced by at most one node. This is the
problem of dependence between formulas described
above. It can lead to gathering more inputs than necessary.

 At each step, only one input is acquired from one worker.
The batching mechanism described above violates this.
However, making tasks more efficient for workers may
reduce overall cost and completion time. The user controls
this tradeoff via the =ASK(…) parameters and the setup.

Single-step assumption
AskSheet considers only the effects of the next input
acquired, and greedily acquires whichever maximizes
overall expected cost savings. In many value of information
applications, this can diminish optimality, especially for
those that optimize cost and another utility function [13,21].

Within the above assumptions, the single-step assumption
does not affect AskSheet. We will explain with this example.

 A B C
1 =ASK("0 to 1") =ASK("0 to 100") =AND(A1=0, B1=0)
2 =ASK(“0 to 1”) =ASK("0 to 100") =AND(A2=0, B2=0)
3 =ASK(“0 to 1”) =ASK("0 to 100") =AND(A3=0, B3=0)
4 =OR(C1:C3)

If either A1, A2, or A3 were chosen first, then the expected
model cost would be 3.88. However, choosing B1, B2, or
B3 first would reduce that to 3.61, for a utility of 0.27. (These
were calculated by AskSheet, and will not be derived here.)
Below, the dashboard is annotated with all of the utilities.

 A B C

1 {0…1} U=0.00 {0…100} U=0.27 {false…true}

2 {0…1} U=0.00 {0…100} U=0.27 {false…true}

3 {0…1} U=0.00 {0…100} U=0.27 {false…true}

4 {false…true}

Although the pair of (A1, B1)—or (A2, B2) or (A3, B3)—
could eliminate the other four cells, AskSheet does not know
this. Nevertheless, optimality is not affected, as we will see.

Suppose we enter 0 in cell B1. Then, A1 gets the highest
utility since it could eliminate the remaining cells. Taking Figure 3. Model for field trial #1 (pediatrician)

A1 next, the expected model cost would be 2.28, versus 3.01
if B2 or B3 were chosen next, or 3.22 if A2 or A3 were next.

 A B C

1 {0…1} U=0.93 0 {false…true}

2 {0…1} U=0.00 {0…100} U=0.21 {false…true}

3 {0…1} U=0.00 {0…100} U=0.21 {false…true}

4 {false…true}

The result is the same as if the pair had been selected
together. More generally, because utility is based on
marginal probabilities over all other values, there is no extra
value to selecting pairs (or n-tuples) together, as long as the
input with single highest utility is acquired at each step.

In practice, it is often more efficient to gather a few related
inputs at once. This can affect optimality, although the user
can control that tradeoff in the setup panel. If the user had
set batch size to 2, B1 and B2 would have been acquired first.

QUANTIFYING UNSTRUCTURED INPUTS
Up to this point, we have discussed only models where all
inputs are either numbers or discrete choices. AskSheet
handles unstructured, non-numeric inputs using a method we
call text scoring. It leverages the “score” input type
mentioned in the =ASK(…) parameters (Figure 2).

Field trial #2: Car shopping
The use of text scoring is illustrated by the following
scenario. Jay is shopping for a new car and has these criteria:

 Hatchback with 4-wheel-drive
 Good fuel efficiency
 Wheel base about 100 inches (similar to Jay’s former car)
 Abundance of modern safety features
 Seats 5 adults comfortably (for long car trips)

As before, Jay creates a spreadsheet model. The last two
criteria are difficult to quantify. Although they are somewhat
subjective, Jay will write his criteria and ask workers to
simply specify how well each car model fits what he wants.

Workers are given two car models to research at a time. For
safety features, they are asked to write a textual description
of how spacious they think the inside of the car would be, as
it would relate to traveling with 5 adults. They are instructed
to look for photographs of the interior or other metrics that

would help. The first worker is asked to compare the two
models based on which seems to be most spacious. A similar
course was used to compare by safety features (Figure 4).

To enable a global view across tasks and/or workers,
AskSheet asks subsequent workers to compare the features
on the car model they have researched together with the text
descriptions entered in up to four prior tasks. Figure 4 shows
this comparison with two prior values.

Each subsequent worker who does the task adds some new
descriptions and is shown some prior descriptions for
reference. To reconcile all of the scores, AskSheet scales and
translates all of the scores for a particular field onto a
common coordinate system (i.e., offset and scale). This is
analagous to if all of the scores were in different unknown
units, and there were just a few measurements of the same
quantity with which to convert the units of one to another.

Two common scores would be sufficient if the information
were perfect. A challenge is that workers may disagree on
the relative score of items, and the values on the slider may
not be precise, in the absence of more reference points.
Therefore, we collect up to four comparative scores with
each task in order to accumulate redundant information and
use the method of least squares to solve for the set of scale
factors and offsets that gives the best fit (Figure 5).

When we ran the model to choose between 20 current model
cars, the results for the text scoring agreed with our own
assessment of the cars (e.g., Volkswagon CC = 0.14, Volvo
C30 = 0.83). Although this method is not designed to be
statistically rigorous, in the context of a model with various
kinds of information, it allows us to add these unstructured
inputs. In this case, because these items were mixed with
numeric and choice answers, only 8 of the 20 cars were
compared for safety features and spaciousness.

We received a conclusive answer (Subaru Outback) in 2
hours 4 minutes. With the prioritization, AskSheet required
only 62 of the 120 inputs. The total cost was $7.50 with one
judgment per input. We paid $0.50 per task. The 12 workers
spent a combined total of 1 hour 34 minutes, for an average
hourly rate of $4.75 per hour.

Figure 5. In this minimal example, text scores from two
workers who each scored three items are aligned.

Figure 4. Text scoring interface

Had all of the 120 inputs been fulfilled, the total cost would
have been $12.50. The optimizations saved $5.00 (40%).

This strategy was adopted to allow a richer set of models, but
is not intended to be primary basis of a model. A more
thorough study of text scoring is needed to fully understand
its ability to reconcile scores from different contributors.

Prioritizing without known bounds
Another challenge is that there is no way to specify bounds a
priori for such unstructured quantities. To solve this, at each
step, after reconciling the scores received so far, AskSheet
estimates how much of the total space has been seen so far.

This is accomplished using maximum spacing estimation
(MSE) [20], a method of estimating properties of a
distribution based on a limited sample. The MSE formula
for uniform distributions gives us an estimate of the global
maximum and minimum (e.g., Relative to cars seen so far,
what is the most spacious car on the consumer market?).

௦௧௧ݔܽ݉ ൌ
݊ ∙ ௦௦ݔܽ݉ െ ݉݅݊௦௦

݊ െ 1

݉݅݊௦௧௧ ൌ
݊ ∙ ݉݅݊௦௦ െ ௦௦ݔܽ݉

݊ െ 1

Although this relies on our presumption of uniform
distribution, which is very unlikely to be accurate for these
fields, the effect is what we need: The bounds narrow as
more inputs are received. From that, we calculate a scale
factor and offset that are applied to all scores in a given field.

ݎݐ݂݈ܿܽ݁ܽܿݏ ൌ
1.0

௦௧௧ݔܽ݉ െ ݉݅݊௦௧௧

ݐ݁ݏ݂݂ ൌ െ݉݅݊௦௧௧ ∙ ݎݐ݂݈ܿܽ݁ܽܿݏ

That pushes all values toward the middle of the space from
0.0 to 1.0. The prioritization assumes a minimum and
maximum of 0.0 and 1.0, respectively, so this effectively
causes the prioritization to assume greater and/or lesser
values may still exist. As more values are received, this
margin is decreased gradually.

This approach while straightforward, is necessary to enable
a richer set of models using a variety of types of data. It is
not necessary to discover the absolute maximum or

minimum for any one attribute. Eventually, with enough
data, one decision alternative in the decision will prevail.

Field trial #3: Smartphone shopping
Another example we have used throughout the project
development is comparison shopping. Using a spreadsheet,
a user can model their exact personal preferences, and
include details that might not be important to all shoppers.
The simplest way to model this is with a weighted sums
model, which depends on the =MAX(…) and =SUM(…)
formulas. Web workers can be employed to search the web
for details about the alternatives.

We created a model to compare seven leading smartphones
by the following criteria:

 Weight=1: screen size, material, appearance, CPU cores
 Weight=2: physical shutter button, camera megapixels
 Weight=4: battery talk time, storage potential, RAM

For appearance, it was set up to ask workers to look at a
photo of the phone and compare based on the scale of “solid”
to “cheap-looking”. As in the example of car shopping, we
separated this unstructured input into a separate role.
Because it had a relatively low weight, it was prioritized low
and ultimately not utilized for this field trial. Since this is a
more time-intensive task for workers (and we set it to pay a
higher reward), this demonstrates how prioritizing inputs can
save worker effort. Which cells will be needed cannot be
predicted in advance. The result is shown in Figure 6.

We received a conclusive answer (Samsung Galaxy S4) in 1
hour 29 minutes. With the prioritization, AskSheet required
only 40 of the 63 inputs. The total cost was $8.00 with one
judgment per input. We paid $0.80 per task. The 4 workers
spent a combined total of 1 hour 5 minutes for an average
rate of $7.38 per hour.

Had all of the 63 inputs been fulfilled, the total cost would
have been $12.83. The optimizations saved $4.83 (38%).

QUALITY CONTROL
AskSheet includes a few mechanisms for controlling quality.
First, in the setup screen, the user can request multiple
judgments. The judgments can be aggregated by averaging
(for subjective ratings) or voting (for objective information).

Figure 6. AskSheet’s dashboard shows how 20 of the 63 inputs in this smartphone shopping model were eliminated. Note
that many of the values shown are the values associated with labels in a drop-down selection control specified in the model.

AskSheet optimizes this, as well, requesting judgments
incrementally. For example, if the user requests five
judgments and the first three agree, it will not request any
more. In fact, it only requests one at a time because there is
always a chance that the input might be eliminated by the
optimizations. This approach was inspired by Get Another
Label [22], although it is far simpler than that system.

In addition to multiple judgments, AskSheet uses the input
specification to validate the format and range of the inputs.
In the setup screen, the user may specify that blanks not be
allowed (i.e., all inputs required) and/or that ranges must be
enforced (or not). With these options, the form does not
allow submission until the inputs conform.

DISCUSSION
The models we used for these field trials allowed us to
demonstrate AskSheet in the context of familiar personal
decision problems within the technical boundaries of our
current implementation. However, these examples do not
capture the full expressive power of this framework.

In creating those models, we were confined by the limitations
of our current implementation. We had to limit =SUM(…),
=MIN(…), and =MAX(…)functions to around 30-40
parameters each. Moreover, the system does not yet support
functions related to relative ordering, such as =RANK(…),
=PERCENTILE(…), =MEDIAN(…), =LARGE(…), and
=SMALL(…). If it did, far richer models would be supported.

Spreadsheets are used in business contexts to model a wide
range of decision problems [12]. In fact, the language of
spreadsheets formulas can be considered first-order
functional programming [1] and, as such, can be used to
solve problems as permutations, combinations, and even the
Towers of Hanoi problem [4]. The most fundamental
requirement imposed by AskSheet—ignoring computational
boundaries—is that the decision answer(s) be expressed as a
formula(s) somewhere in the spreadsheet. However, some
types of problems are more amenable than others.

From our experiences so far, we have learned that the method
works best where the decision-maker knows in advance what
aspects are important and something about the choices. In
addition, there is a trade-off between the time the decision-
maker must spend specifying the model and the instructions
versus the time that is saved by delegating the work to others.

As we mentioned in the introduction, our vision for AskSheet
extends beyond Mechanical Turk to internal organizational
decisions that require inputs that are not readily on hand.
Besides gathering facts from the web, this could include
trusted judgments, such as evaluating materials submitted by
applicants to a job or academic program. Spreadsheets have
the advantage of creating a record of the decision rationale.

Instead of working through Mechanical Turk, internal users
would enter inputs via a private web site. Since they would
already be familiar with the context, we expect the burden of
writing instructions would be less. However, since the
“cost” of asking different people is rarely equal—in terms of

hourly rate, social capital, etc.—the decision coordinator
who creates the model would need an interface for specifying
the relative cost of asking each collaborator. For example,
asking the boss could be considered equivalent to asking an
administrator five times. If the same model contained tasks
for Mechanical Turk and internal collaborators, then it would
need to relate social capital to monetary cost, as well.

MORE POTENTIAL APPLICATIONS
In this section we outline two use cases that illustrate our
vision for the future, and how they can be modeled.

Example: Vacation
Vicky wants to take a vacation sometime in March for a few
days. She has three destinations in mind, with a preference
for Puerto Rico. Cost is important, too.

She makes a table of the travel dates that are compatible with
her work schedule, and her preference (1 to 10) for each. She
does the same for the candidate destinations.

Elsewhere, she enters weights that describe what aspects are
important to here. Finally, she uses formulas to make a table
of every combination of destination, departure date, and
duration along with a calculated score for each combination.

At the top, a result formula displays the best option of all.

The large number of combinations makes this infeasible with
our current implementation. With a future version, Vicky
could direct workers to check various travel web sites to find
the best airfares, hotels, and other features for each location,
date and duration. If the hotels at a destination are expensive,
it would skip checking airfares for any of her listed dates.

Example: Reviewing conference paper submissions
The XYZ conference has a very simple review process. It
initially assigns three reviewers per paper. For those that are
borderline, it adds more until a consensus forms.

This could be modelled as accepting any paper where the
median of five scores is at least 4.0 out of 5.0. If the first
three are more (or less) than 4.0, then no more are needed.

They could have structured the process in other ways. For
example, to target a 25% acceptance rate, it could accept
every paper in the top 25 percentile, as this model illustrates:

To accept a specific number of papers (e.g., to fit the number
of rooms), the RANK(…) function could be used as follows:

In each case, once there was enough information to be sure
the process was complete, it would stop requesting reviews.

Note that since the submissions are confidential, reviewers
would of course be trusted experts, not web workers. Also,
the scores would be entered on a private, controlled web site.

CONCLUSION
We have presented AskSheet, a system that leverages the
structure of a decision spreadsheet to coordinate an efficient
human workflow to solve the user’s overarching decision
problem without necessarily gathering all of the inputs. It is
fully operational with a basic set of spreadsheet operations.

The three field studies each generated decisions in about 1-2
hours for between $5.67 and $8.00, while paying workers
between $4.75 and $7.38 per hour. This shows what we
believe to be a financially and temporally viable process.

Extending this to larger, more complex decision models will
require solving many technical hurdles. Adding support for
spreadsheet functions related to ranking and relative ordering
will enable new model types important for decision-making.

The potential benefits extend well beyond saving money or
time. The ability to offload a complex task such as gathering
information for a decision would give users new flexibility
for delegating work. Also, a user who might otherwise
choose to satisfice—accept a subpar option to avoid the
tedium of researching others—would gain a viable
alternative. Ultimately, we see this as an opportunity to
effectively connect such users with the people who can help.

ACKNOWLEDGMENTS
We gratefully acknowledge the advice of Nicholas Chen,
Chang Hu, Lise Getoor, Piotr Mardziel, Atif Memon,
Jay Pujara, Ben Shneiderman, Keith Walker, Tom Yeh, and
Ben Zou, as well as thoughtful feedback from the reviewers.

REFERENCES
1. Abraham, R., Burnett, M., & Erwig, M.. 2009. Spreadsheet

Programming. Wiley Encyclopedia of Comp Sci and Eng.

2. Bernstein, M. S., Brandt, J., Miller, R. C., & Karger, D. R.
2011. Crowds in two seconds: Enabling realtime crowd-
powered interfaces. UIST ’10.

3. Bernstein, M.S., Little, G., Miller, R.C., et al. 2010.
Soylent: a word processor with a crowd inside. UIST ’10.

4. Casimir, R. J. 1992. Real programmers don't use
spreadsheets. ACM Sigplan Notices, 27, 6, 10-16.

5. Cheatham, Jr, T.E., Holloway, G.H. & Townley, J.A. 1979.
Symbolic evaluation and the analysis of programs. TOSE.

6. Dai, P., Mausam, & Weld, D. S. 2010. Decision-theoretic
control of crowd-sourced workflows. AAAI ‘10.

7. Franklin,M., Kossmann,D., Kraska, et al. 2011. CrowdDB:
answering queries with crowdsourcing. SIGMOD ‘11.

8. Franklin, M. J., Trushkowsky, B., Sarkar, P., & Kraska, T.
2013. Crowdsourced enumeration queries. ICDE ’13.

9. Frei, B. 2009. Paid crowdsourcing: Current state &
progress toward mainstream business use. Smartsheet.com.

10. Ipeirotis, P.G., Provost, F., & Wang, J. 2010. Quality
management on Amazon Mechanical Turk. HCOMP ‘10.

11. Joyner, D., Čertík, O., Meurer, A., & Granger, B.E.. 2012.
Open source computer algebra systems: SymPy. ACM
Communications in Computer Algebra, 45, 3/4, 225-234.

12. Kirkwood, C.W. 1997. Strategic Decision Making:
Multiobjective Decision Anal. w/ Spreadsheets. Duxbury.

13. Koller, D. & Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT Press. 1121-1125.

14. Lewis, C. 1985. Extending the spreadsheet interface to
handle approximate quantities and relationships. ACM
SIGCHI Bulletin, 55-59.

15. Little, G., Chilton, L.B., Goldman, M., & Miller, R. C.
2010. Exploring iterative and parallel human computation
processes. HCOMP ’10.

16. Marcus, A., Wu, E., Karger, D.R., Madden, S.R., &
Miller, R.C. 2011. Crowdsourced databases: query
processing with people. CIDR ‘11.

17. Pirolli, P. & Card, S.K. 1999. Information foraging.
Psychological Review, 106, 4, 643-675.

18. Quinn, A.J. & Bederson, B.B. 2011. Human computation: a
survey and taxonomy of a growing field. CHI ’11.

19. Quinn, A.J., Bederson, B.B., Yeh, T., & Lin, J. 2010.
CrowdFlow: integrating machine learning with Mechanical
Turk for speed-cost-quality flexibility. Technical Report
HCIL-2010-09, University of Maryland.

20. Ranneby, B. 1984. The maximum spacing method. An
estimation method related to the maximum likelihood
method". Scandinavian J. of Statistics, 11, 2, 93–112.

21. Shachter, R.D, & Peot, M.A. 1992. Decision Making Using
Probabilistic Inference Methods. UAI ‘92.

22. Sheng, V., Provost, F., & Ipeirotis, P.. 2008. Get Another
Label? Improving Data Quality and Data Mining using
multiple noisy labelers. KDD ‘08.

23. Simon, H.A. 1972. Theories of bounded rationality.
Decision and organization 1, 161-176.

24. Tong, S. & Koller, D. 2002. Support vector machine active
learning with applications to text classification. JMLR.

25. von Ahn, L. 2005. Human Computation. Doctoral Thesis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

